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Abstract other constraint penalizes motion fields with non-zero diver-
Deformable motion models are useful for analysis of gence. A problem with this approac_h Is that i.t s diffieLiri-
dynamic datasets exhibiting non-rigid motion, as in gated ca!! to choo;e factors which app_roprlately weight the two .
diac PET. We employ an algorithm that obtains a vector field tBeguIarlza'uon pomponents .aga.unst each ot_her. We address: this
describe the relative motion of each voxel between two datapmblem by using a regularization function inspired by contin-
sets. The estimation is based on a two-component cost funddum mechanics. As the motion field deforms the source vol-
tion: an image matching component, and a motion field ume, itis peljalized by t-he sFrain energy Of. a similarly
smoothness component. An important aspect of obtaining aHeformc_ad uniform elas_tlc object. By chgosmg_elashc_ parame-
accurate motion field estimate is properly balancing the weig 'S which are appropriate for the phys[clal object b.elng
between the two cost components. We show that by using a eformgd, We can thus have .bett.er intuition regarding the
material elastic model inspired by continuum mechanics, an2Ppropriate weight of regularization components.

intuitive interpretation of the weighting factors for the smooth-

ness constraint may be obtained. Further, we show that mis- Il. METHOD

matches between actual material elastic parameters and thoseThe motion estimation framework is described as follows.
used by the estimation algorithm can lead to greater estimatigxfine two 3D density fields, a source volunfigir) ,and a
error. Results are validated using an ellipsoidal phantom sinfdference volumef,(r) ,where= (x,y,2 represents the
lating compressible and incompressible deformations. voxel index. A dense Lagrangian motion field is defined as
m(r) = (u(r), v(r),w(r)), and the deformed volume é&f is
|. INTRODUCTION defined asf (r) = f,(r + m) . With these definitions, we can

Establishing a correspondence between voxels in two express an image matching error teeqr)  given by

image volumes from a gated cardiac data acquisition is neces- g (r) =y [f(r)- f(r)]2 , (1)
sary to make wall motion estimates or calculations on matchyq 4 regularization termeg(r) , dependent on the spatial

ing tissue regions. Because the myocardium is a non-rigid  gerjyatives of the motion field. A constant teyn, |, is used to
structur_e that bends and stretcr_les during the.cardiac cycle, S\,W%‘lght the strength of the image matching component relative
ple motion models such as a six parameter rigid-body descrig-ihe regularization component. The overall estimation prob-
tion are inadequate to describe the motion, and a more complgy, js to find a motion field consistent with elastic material

deformable motion model must be used. properties that best matches the deformed volume to the refer-
One technique to describe the motion is to use a dense V&¢=a volume via a minimization of:

tor field, called a motion field, which describes the relative dis-

placement of each voxel, and thus establishes a voxel-by-voxel Eior = ) [&1(r) +eg(n)]. )
correspondence for every point in two image volumes. Algo- _ r _ )

rithms to estimate this motion field find their roots in the two- Ve describe the regularization function as the strain energy

dimensional optical flow literature. In simple terms, these alg8f @ linearly elastic uniform isotropic material. We may
rithms are all based on two general constraints. First is an €XPress the strain energy at a given voxel by the relation [2]:

image matching constraint that serves as a driving force tryir@g(r) = é(ux FV o+ Wz)2 + U(Ui V2 + wf) + 3)
to pull voxels in a source volume so that they deform to match 2 ) yz s 2 o y2
the image in a reference volume. The second constraint L—zl(uy U, + Vi F VW W+ 2UV, 20, W, 2V, W)

impqses a regularizatiqn on the motion field, qnd tries to where we use the notation for partial derivativgss du/ dx ,
res_tnct the large domain of possible def_ormat!ons to those and have omitted from the derivative terms to simplify nota-
which are more smooth and more phyS|ca_IIy I!kely. For €XaMion. The termsy  and , are elastic weighting terms called
ple, Song and Leahy [1] use a 3D generalization of an Opt'cﬂhe Lamé constants. These can be written in terms of intuitive

flow alg]?nthm thatl gxprisses thel regularrllzatmn constrgmt "E ysical parameterg, called the Young'’s elasticity modulus
terms of two penalties. A general smoothness constraint penals called the Poisson ratio:

izes large values in the gradient of the motion field, and the
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E = o andv = S (4)
E relates the tension of the object to its stretch in the same
direction, andv is the ratio between lateral contraction and
axial extension. As a simple example, consider the uniaxial
stretching of a rectangular object in two dimensions. A chang
in length along the direction of force from tordL , and a
corresponding length change along the perpendicular axis frq
S to S+d Swill be described by the Poisson ratio as follows:
dS/S = —v(dL/L). Fig 1. Hollow Ellipsoid Model. Central slice through the refer-

It can be seen thatthe term in the equation penalizes nornce volume (left), which represents the volume in the deformed
zero divergence and the  term penalizes sharp discontinuitie§tate. The source volume used in an incompressible deformation of
in the motion field. For highly incompressible fields, the Pois- the reference is seen in the middle; the source volume used in a
son ratio approaches a maximum of 0.5, which yields a diver-compressible deformation is also shown (right). An edge map of the
gence term) , much larger than the  term. In the limit of a reference volume is overlaid on both source volumes to show the
completely incompressible material, the Poisson ratio is relative motion.
exactly 0.5 and any deformation will be volume preserving.
Conversely, stretching a compressible material will increase
volume and squeezing it will decrease the volume.

A formulation based on continuum mechanics like this one lll. RESULTS
allows us to more intuitively set weighting factors which better  To test the hypothesis that properly chosen elastic parame-
model the expected deformations exhibited by an object beifgts can improve a motion estimation algorithm, a 3D hollow
imaged. For example, in imaging of the heart, it is known tha|lipsoidal phantom was created. The phantom was defined
myocardial tissue is nearly incompressible [3]. Therefore, it using a 6464x16 voxel volume. Background voxels were set
should be expected that regularization weighting terms repreo zero. In order to test whether the algorithm could track fea-
senting a Poisson ratio close to 0.5 would be most appropriaifes in the phantom, voxels within the boundaries of the inner
to describe the deformation of this tissue. and outer ellipsoids were set to an intensity governed by a sinu-

Minimization of the overall energy function is achieved byspidal pattern varying along the X-axis.
using a Taylor series expansion of the motion field and the cal- The model was allowed to deform into two different con-
culus of variations on the resulting functional. Assuming thefigurations. The first of these represents an incompressible
true motion field isn , and the current estimaténis , then adeformation, where expansion along one axis was matched by
Taylor series approximation df(r) ~ can be expressed in termgntraction along the other. In the second configuration, the
of a delta motion fielddm = m-m , as phantom contracted along one axis only, thus representing a
f(r) = f,(r+m)-0f(r+m)dm. Substituting the expression, compressible deformation. More exactly, the boundaries of the

m-3m, for m in the constraint equations results in a quadrati;iner and outer ellipsoids for either configuration are defined
functional indm that can be minimized via the calculus of by the equation:

Reference Incompressible Compressible

approach may be used [6].

variations [4]. The resulting Euler-Lagrange equations are 2 2 2
solved using finite differencing techniques and a conjugate gra- X 5+ Y 5+ z 5 = { AL A} 5)
dient method. For the simulations presented in this paper, Neu- (a,a)” (ayb)” (a,c)

mann boundary conditions were enforced, which constrainswherea, b, ¢ describe the ellipsoid size along each ajsA,
various components of the motion field gradient at the volunze parameters controlling the global size of the inner and outer
edges [1]. Solution to the overall problem is carried out in a boundaries, andx,uy,qz represent stretch factors that can be
two-step process involving two loops. In the outer loop, the used to describe a deformation. The sinusoidal voxel intensity
current estimate of the motion field, , is used in the non-lirelation may be similarly defined to properly account for defor-
ear calculation of the current deformation voluni¢r) . Themmation of the ellipsoid:

in an inner loop, the linear approximation is used in a conju- 0T

gate gradient algorithm to compute the kst satisfying the B+ CCOSEBGXa[I ®)

constraint equations_. Thi_s delta motion field iS. then added tq:ig. 1 shows a slice through the reference and source volumes
the curre_nt total motion field ?”d the_ Process 1S re_peated_ F%’r the incompressible and compressible cases. The source vol-
ther details on the overall motion estimation technique may es define the undeformed configurations when all stretch

found in [E?]’ [6]. Note that the linear approximz_ition used in thefactors are set equal to one. The reference volume represents
Taylor series approach assumes that the maximum nofm of the deformed configuration where at least one of the stretch

1S relatlv_ely small, else the_ alg(_)nthm would have difficulty ¢ q4qrg ig not equal to one. For the incompressible deformation,
converging to the true motion fieldy . We have found that fora - 0.8 0, = 1.25 a, = 1.0; for the compressible deforma-
the simulations presented here, the assumption is valid. For. X~~~ Y ~~ =~ 2 """’

here the i def tion is 100 | for the al tion, a, = 1.0.a, = 1.25a, = 1.0. Use of this type of deforma-
cases where Ine image detormation 1S 100 farge tor the algosjqn 5jows an analytical expression for the actual motion field.
rithm to converge to the correct motion field, a multi-scale
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Fig 2. Incompressible Deformation ResultsDeformed vol- %0 n

umes for the incompressible case using three different values of thr 2,0 | [
Poisson ratio. Deformed volumes and an edge map of the referenc |
volume shown in the top row indicate that the algorithm worked
fairly well in all cases. Subtleties between the models are more ev
dent in the difference images between the reference and the
deformed volumes, shown in the bottom row. Since the material is
incompressible, one would expect a modeled Poisson ratio closes
to 0.5 to perform the best. Comparing the images and the figures o
merit, it is seen that modeling the material as too compressible
(Poisson ratio=0) produces inferior results. However, modeling the

material as too incompressible also appears non-optimal. 0 005 01 015 02 o O-ZSR 03 004 04 05
isson Ratio
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Assuming the center of expansion and the ellipsoid center arb'9 3 Mothn Estlmatlpn Results.Estumgtuon errorvs. Pois-
at the origin, this is: son ratio for incompressible and compressible deformations. In

U= x(oy-1), v= y(ay—l), W= Za,-1) @) both cases, using a Poisson ratio that matched the true value in the

estimation algorithm produced better results.

The motion estimation algorithm was run for a range of
physically valid Poisson ratios (between 0 and 0.5), and the
accuracy of the estimated motion field was calculated. As a figspecially evident by comparing the difference images in the
ure of merit, we use the magnitude difference between esti-bottom row. On the other hand, a somewhat unexpected result
mated and true motion fields within the region of the is seen in that modeling the material as too incompressible can
ellipsoidal shell. The sum of squared difference between thealso be non-optimal. Similar behavior is seen in the case of the
reference and the deformed volumes is also calculated as a s@gapressible deformation.
ond figure of merit. Figure 3 plots the motion estimation error verses different

Fig. 2 shows the resulting deformed volumes and differenaglues of the Poisson ratio for the incompressible and com-
images for three different values of the Poisson ratio. In all pressible simulation cases. It is seen that in general, for the
cases, Young’s modulus was set to 1.0 and the same imageincompressible case, choosing a Poisson ratio near 0.45, which
weighting termy, = 40 , was used. Itis first seen that the algéepresents a fairly incompressible material, appears to produce
rithm performed fairly well for all cases shown here. For exanihe best motion estimate and deformed volume. For the com-
ple, the voxel size for this phantom s2X4 mm and the pressible case, choosing a Poisson ratio closest to 0.0 appears
motion error was calculated over 6872 voxels representing best. This behavior verifies the assumption that matching the
interior the source ellipsoid. Therefore, the average motion elastic material parameters in the strain energy of the motion
error magnitude for the worst case in this example was still jusstimation algorithm to the actual elastic properties of the
12478/6872 = 1.8 mm, or less than one voxel dimension. ThHénderlying deforming object will improve the estimated
main point of the figure though, is that it shows the expectednotion field.
result that modeling the material as too compressible, where The unexplained slight discrepancy between the algo-
v =0, will result in some deformation artifacts. These are  rithm’s optimal performance at=0.45 rathertham 0.5  for
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Fig 5. Motion Estimation Results-Noisy CaseNoisy refer-
ence volume (a), source volume (d), and deformed volumes using
v = 0 (b) andv = 0.45 (c). Using the less compressible model
produced a deformed volume with less motion field error (10192
vs. 14340) and less image matching error (848 vs. 950). Squared
difference images between the noiseless reference and the
deformed volumes are seen in (e), where the compressible model
was used, and in (f), where the incompressible model was used.

Incompressible Motion Compressible Motion case, it is seen that the minimum occurs not at 0.5, but at a
value near 0.45. This characteristic is consistent with the
Fig 4. Analytical Strain Energy For True Motion Field. motion estimation results. That is, the motion estimation algo-

Strain energy vs. Poisson ratio for incompressible and compressiblethm appears to favor the motion field configuration with the
motion fields (top). Motion fields for the simulated incompressible minimal strain energy.

and compressible deformations are seen in the bottom row. For the For matching volumes where image noise is present, the
compressible case, minimum strain energy occurs for a Poisson material model parameter selection becomes more crucial.
ratio equal to zero. For the incompressible case, the minimum  Here the restraining properties of the elastic model are useful
occurs at a value near 0.45. These results are in agreement with tlfer preventing false matches between spuriously correlated

motion estimation results in Fig. 3. voxel intensities in the source and reference volumes. An
the incompressible case may be understood by considering tl : : : : : : e 15000
strain energy of the true motion field for different values of the so - Motion Error - 1
Poisson ratio. For the incompressible case of pure dilation
along the X and Y axis, the ratio of lengths for line segmentsir ™[ 1
the source to deformed volumes is givendoy  anid forthe | |
Xand Y axes, respectively, whete is a stretch factor. Here, _ {100 3
stretch factor of 0.8 was used, and the resulting strain energz% 80 |- 1 %
has only two non-zero terms, = 0.2 , angd= 025 . For _ 5
the compressible case of a true object characterized by a Pa ~ **[ 1% =
sonratio,v = 0 , the stretch is only along the Y axis. Theonly | /|
non-zero term in the strain energy function in this case is ! 1100
vy = 0.25. 820 .
Using these motion fields, we can plot the resulting strain L/
800 . : . . . . . . . 10000

energy as we vary the Poisson ratio. The results are seenin F o om o1 01 02 03 03 03 04 o0s 05

4, along with the true motion fields for the compressible and Poisson Ratio

incompressible deformations. Vectors in the motion field repreFig 6. Motion Estimation Results-Noisy CaseError vs.

sent the direction and magnitude of the motion component inmodeled Poisson ratio shows same trend as the noise-free case
the displayed image plane. The plot shows that for the com- (Fig 3). Optimal results are obtained using a strain energy model
pressible deformation, the minimum strain energy occurs at ahat matches the true material characteristics.

Poisson ratio equal to zero. However, for the incompressible
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between the reference and the deformed source volumes serves
as the driving force which further deforms the source volume
in an effort to better match the two. Increasypg  thus forces
the source volume to stretch “harder” to match the reference.
The figure plots the error between the deformed noisy volume
and the true, noiseless reference, as well as the motion field
error magnitude for various image error weights in an incom-
pressible test case. Two different Poisson ratios are used: 0 and
0.45. It is seen that for very low valuesyf , the error mea-
sures are large for both modeled Poisson ratios. Here, there is
simply not enough force to adequately stretch the source vol-
il e T 1 ume into the shape of the reference. However, at the other
— . . . extreme, too great a weighting on the image matching criterion
mage Erfor Weighting encourages the algorithm to match not only the general shape

- T T T T misned — between the two volumes, but also to match spuriously corre-

lated noise spikes as well. It is desirable to use only as much
image matching force as necessary, and use regularization
forces from the strain energy to prevent physically unrealistic
deformations. This is more likely to occur when we have
appropriately modeled the true elastic behavior of the deform-
ing material.
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| IV. DISCUSSION

Results lead us to believe that by more accurately modeling
the physical elastic properties of cardiac tissue and other struc-
T e - tures within the field of view in a cardiac data set, we may

Image Error Weighting obtain a more accurate estimate of the motion field describing
the non-rigid deformation. The results also help to understand
Fig 7. Image Weighting Effects-Noisy CasePerformance of ~ formulations like those of Song. They used the following regu-
the motion estimation algorithm on the incompressible noisy caselarization function composed of a divergence-free component
using different image error weighting ternyg,. This term can be  weighted byy, , and general smoothness component weighed
thought of as changing the driving force which makes the elastic by yq:
volume deform. Too little force and the source volume will not
deform enough to adequately match the reference. However, too )
large a weighting drives the algorithm to match spurious noise + yS(ui U+ U Vi VYV, F W W

=) S —— ——

800

eq(r) = yD(ux+vy+wZ)2 (8)
y 2 2 2 2 2 §+W§)
spikes, and thus increase the error figures of merit. Regardless OfComparing Song’s regularization function to the strain energy
the image weighting used, the importance of choosing appropriatgynction used in this paper, one can see similar components. In
elastic parameters is evident. fact, it can be shown that the resulting Euler-Lagrange equa-
tions are identical if we sgt; = p/2 , ang = (u+A)/2
example of this characteristic can be seen by comparing thelhe advantage of using the strain energy form is that we obtain
results of using the incompressible phantom where additive €xtra intuition knowing that the Lamé constants can be related
Gaussian noise has been included in both the reference ando real physical phenomena seen in elastic materials. For exam-
source volumes. Seen in Fig. 5, the estimation using a Pois$¥@, the Poisson ratio for all known elastic materials is a posi-
ratio representing a fairly incompressible matenak(0.45 Yive number between 0 and 0.5. Using the relation of equation
produced superior results to the estimation using a compres&), Song’s smoothness term must therefore always be
ible parametery = 0 ). Comparing the squared image differweighted less than the divergence term if we wish to model
ence between the deformed volume and noise-free referenc@hysically plausible elastic material behavior. This may
12% increase in error results when using the more compresgxplain why poor results are obtained if the motion field is
ible parameter. Likewise, using the flow magnitude error me@ver-smoothed, as was demonstrated by Gorce, et. al. in their
sure, the more compressible model produced a flow field wifRvestigation of the effects of different weightings of smooth-
41% greater error. Fig. 6 summarizes the noisy results for oth@gss and divergence penalties in deformable motion estimation
values of the Poisson ratio. It is seen that the performance dtlgorithms [7]. Thatis, motion fields using a relatively laxge
the algorithm in the noisy case is similar to the noise-free  value implicitly imply that a negative or small value for the
result. Poisson ratio is assumed. If the deforming material is truly
Fig. 7 gives information regarding the effect of changing incompressible, we would then expect the motion estimation
the image error weighting termp, . Recall that the differencélgorithm to produce inferior results using a layge



We note that the strain energy model used here assumegxample, that in order to better follow features for incompress-

infinitesimal displacements. In fact, this explains why the

ible cardiac tissue, then this tissue should be characterized by a

strain energy for a motion field representing an incompressibieaterial model that enforces incompressibility. We acknowl-
deformation does not obtain a minimum for a Poisson ratio @dge that the elastic properties of cardiac tissue are certainly
0.5. We see that in our simple example using an incompressildlgferent from the adjacent blood pool and lung tissue. How-
stretch ratio of 0.8, that the motion field divergence does notever, by separately describing each tissue class with appropri-
sum to zero (i.eu, + vy +w, = 0.05 ). Only in the case of infini-ate physical elastic parameters, it is hoped that feature tracking
tesimal displacements does the divergence approximate zenmay be improved for gated cardiac PET.

[8]. For small, but finite displacements, like the example used

here, the non-zero divergence component can add appreciably

to the strain energy function as the Poisson ratio, and likewise
the A term increases. It is known that the relative displace-
ments, or strain, seen in the deforming heart can have large
stretch factors similar to the values used in this paper on th
ellipsoidal phantom [9]. Strain energy models which include
higher order terms from the strain tensor may therefore mer
further investigation. These models would more accurately
match the motion estimation regularization function to the
underlying elastic behavior; however, because they involve
higher order terms of the motion field spatial derivatives, they
would be more computationally costly and perhaps more sengi
tive to noise [10]. On the other hand, it is known that cardiac
tissue exhibits considerable non-linear elastic behavior which
is not modeled by a finite strain model that includes higher
order terms, so the simple infinitesimal strain energy model [2]
with partially compressible assumptions may be just as suffi-
cient a model to regularize a motion field. [3]
The focus of this paper has been how to properly choose
regularizationweighting terms in the overall cost function
against each other to best constrain a motion field for a specific
type of deforming material. We have only touched on the other
free parameter in the cost functioy), , which weights the regﬁq
larization cost against the image matching component.
Whereas use of an elastic material model is fairly straightfor-
ward for the regularization terms, finding a physical analogy tth]
the “driving force” of the image difference term is more diffi-
cult. For the case of cardiac data, the actual force driving the
cardiac tissue to deform is a combination of active muscle con-
traction and hydrostatic pressures. Relating these forces to a
weighted voxel difference would require a more detailed 6]
model. Until such a model is available, we have little alterna-
tive but to empirically choose image weighting terms that give
reasonable matches. Fortunately, as was displayed in Fig. 7, the
choice of an optimal image weighting term does not appear
be a parameter that needs to be finely tuned, for similar perfor-
mance is obtained using a wide rangg of  values.

V. SUMMARY [8]

Results show that by more accurately modeling the physi-
cal elastic properties of a relatively simple deforming ellipsoit9]
dal phantom, we may obtain a better estimate of the vector
field describing the motion. We hope that by better understand-
ing the behavior of the estimation algorithm for simple materi-
als, we can improve its performance for describing the motigh
field demonstrated by a more complex object, as would be seen
in the data from a gated cardiac study. Results indicate, for
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